Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

Bioprocesses for a sustainable world

Eugéne van Rensburg, Johann Görgens, Neill Goosen, Robbie Pott

Ethanol from waste

Technology potential

Waste/Product stream*	South Africa	Internationally
Paper sludge	500 thousand tons	62.5 million tons
Food waste	10 million tons	1.3 billion tons
Potential ethanol	940 million litres	1 154 billion litres
*Values on annual basis	Global paper sludge production	

- Massive potential for global roll-out of SA technology
- Access to different local & international markets
- First mover advantage

Industrial demonstration scale fermentation of paper sludge waste to ethanol

Track record

- 10 years' research, EtOH concentrations > 40 g/L at >90% yield
- Different paper sludges, fed-batch process, 100 L scale
- Demonstration under industrial conditions
 - Mobile, containerised demonstration plant
 - 1 000 L reactor and bespoke steriliser
 - Replicable, scalable, technical barriers

• Business case

- Tech & financial feasibility
- Technology package

Team & Stakeholders

Prof Dale Gyure

Prof Cara Schwarz

Prof Johann Görgens

Ms Zinhle Ngubane

Dr Daneal Rorke

Science and Innovation REPUBLIC OF SOUTH AFRICA

Stakeholders

MANUFACTURERS ASSOCIATION OF SOUTH AFRICA (PAMSA)

forward together sonke siya phambili saam vorentoe

Ethanol production via Solid State Fermentation

Fermentation of furfural residues to ethanol

Furfural residues

Sugarcane bagasse after steam explosion to produce furfural

Objectives

Compare various enzymes Compare various yeast strains Optimise the enzyme dosage & solid loading Lower the enzyme cost/L ethanol Scale-up

Bioethanol Production from Food Waste

- 931 million tonnes of Food Waste generated globally
- Rich in starch and sugars
- South African legislation
 - Wastes with moisture content ≥40% prohibited from landfill
 - Western Cape to ban 100% of organic wastes (like food wastes) from disposal at landfills by 2027
- Objectives
 - Assess the feedstock potential of food waste
 - Develop a bioconversion process to bioethanol

Fermentation & Anaerobic digestion of wastepaper streams

20 L Bioreactor

Anaerobic digestion

Improvements to Anaerobic Digestion of Organic and Biowastes

MICROORGANISMS

Biomethane potential assessment

Scale-up to 50 L pilot scale digesters

Bio Biogas-> Biomethane

Digestate -> fertiliser

Biogas-fuelled absorption refrigeration to curb post-harvest losses

Completed Objectives

- Modified refrigerator running on biogas
- BMP selected feedstocks
- Fridge performance
- Thermodynamic modelling

Fresh shredded substrates for BMP analysis before ensilage and anaerobic digestion. A: Fish effluent; B: Water hyacinth; C: Common reed; D: Cow manure and E: Maize stover

Bioaugmentation of anaerobic digestion

Lignocellulosic wastes → Rigid chemical structure

- Incomplete hydrolysis
- Slow degradation rates
- Low gas yields

Species A

- Different microbial loadings
- Different solids loadings & blend ratios
- Pure microbial strains and consortium

Pilot-scale (21 L)

- Scale-up of preferred lab-scale conditions
- Assess scale-up effects

Improving the anaerobic digestion of organic wastes through micro-aeration

Target facultative anaerobic bacteria

Increase hydrolytic enzymes

Improve process:

- Hydrolysis rate
- Process stability
- H₂S Scavenging

DECAY FACTORS OF PAPER MATERIALS

BACKGROUND

 Decay factors required for landfilled waste
SA lacks waste-specific data
Impacts pulp and paper industry

AIM & OBJECTIVES

 Estimate decay factors for key paper materials
Upper limit of gas production
Prediction factors
Realistic estimate

High value commodities

Valorisation of Cannabis extraction wastes

Integration with growing industries - winterisation wax separation

Enzymatic production of alginate oligosaccharides

Background

- Hydrocolloid in brown seaweeds
- Alginate lyase catalyse the degradation of alginate
 - Create unsaturated alginate oligosaccharides with functional bioactivities
 - Potential tool for alginate processing and seaweed biorefinery practices
 - Plant stimulants/crop growth promotors/enhancers
 - ➢ Feed additives for animal feed

Aim

- Develop a fermentation strategy for alginate oligosaccharides production from endemic *Ecklonia maxima*
 - Facilitated by isolated wild type native alginate lyase producing microorganisms

Developing novel processes to produce glycolipid biosurfactants

Investigating glycolipids from two perspectives

- 1. Identifying industrial waste streams which could be used for their production, including waste cooking oils and refining wastes.
- 2. Developing novel bioprocesses to achieve enhanced glycolipid production.

Microbial oil production

Engineering · EyobuNjineli · Ingenieurswese

The Purification & Characterisation of Fucoidan from the South African Seaweed *Ecklonia maxima*

- FUCOIDAN → A family of structurally diverse, water soluble, fucose-rich sulphated polysaccharides (FSPs)
- Fucoidan is found in the cell wall of brown macroalgae
- Exhibits many biological properties
 - Anti-coagulant
 - Anti-inflammatory
 - Anti-tumour
 - Anti-cancer
 - Anti-viral
 - Anti-oxidant

Simplified model of the cell wall structure of brown algae

Questions and discussion

forward together sonke siya phambili saam vorentoe

Eugéne van Rensburg and Johann Görgens Dept. Chemical Engineering eugenevrb@sun.ac.za and jgorgens@sun.ac.za

Engineering | EyobuNjineli | Ingenieurswese