

Building Affordable Housing using 3D Concrete Printing

SILL I

PJ Kruger 23 May 2024

Photo by Stefan Els

Austin, TX, USA - By ICON Build (2018):

- 32 m²
- 24 Hours (Walls)
- ≈ R150 000 (Foundation & Walls)
- ≈ R600 000 (Finished)

Wallenhausen, Germany - By PERI Group (2020): 380 m² 3DP in 21 Days

Why Automate Construction?

Why 3D Concrete Printing?

3D Concrete Printing Market Share

Solid: Measured | Hollow: Projected

3DCP Global Entities

3D Concrete Printing at SU

- Designed, Procured & Manufactured at SU (Completed 2018)
- 1 m³ Build Volume
- Coupled with Progressive Cavity Pump for Batch Mixing
- Print Speeds up to 150 mm/s
- Used for Most of our Research to Date

3D Concrete Printing at SU

Designed, Procured &
 Manufactured at SU
 (Completed 2022)

- 16 m³ Build Volume
- All Items Sourced Locally, except Pump (Germany)
- Continuous Mixing Pump
- Automated 4 m³ Silo
- End Effector for On-Demand Chemical Dosing
- Used for Large-Scale Printing

Output since 2017

Engineering · EyobuNjineli · Ingenieurswese

Alumni

• **Dr Stephan Zeranka** - Head of Materials Research & Development at COBOD

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

- Dr Gerius Moelich (ex) Global Head of Material Services at COBOD
- Dr Marchant van den Heever (ex)
 Chief Technology Officer at Harcourt
 Technologies
- **Mr Jandré Oosthuizen** Materials Engineer at Harcourt Technologies
- **Dr Frederick Bester** Head Research & Development at 14Trees
- Dr Seung Cho Research Fellow at UNIST

The Roadmap

Stellenbosch

Research: Material Level

Structuration

Re-Floc

Rheometry

$$f \quad \frac{d}{dt} \left(\frac{\rho.g.h_1^*.v^*.10^{-3}}{2.l_p.F_{AR,expl}}.t \right) \geq \frac{\tau_{S,i.}R_{thix}}{\tau_{S,i}-\tau_{D,i}}$$

Then use $H_{\text{predicted}} = \left[\frac{h_1^* \cdot \tau_{\text{D},i}}{\left(\frac{\rho.g.h_1^*}{2.10^3 \cdot F_{\text{AR,expl}}}\right) - \left(\frac{R_{\text{thix}} \cdot h_p}{v^*}\right)} \right]$ $\left[h_i^* \left(\frac{\tau_{\text{S},i}}{v_{\text{T}}} + \left(\frac{A_{\text{thix}} \cdot \left(\tau_{\text{D},i} - \frac{\tau_{\text{S},i}}{\gamma_{\text{M},i}}\right)}{v_{\text{T}}} + \frac{1}{2} \right) \right] \right]$

Else use $H_{\text{predicted}} = \left[\frac{h_1^* \cdot \left(\frac{\tau_{\text{S,i}}}{\gamma_{\text{M,1}}} + \left(\frac{1}{R_{\text{this}} \cdot \gamma_{\text{M,2}}} \right) \right)}{\left(\frac{\rho.g.h_1^*}{2.10^3 \cdot F_{\text{AR,expl}}} \right) - \left(\frac{A_{\text{this}} \cdot J_p}{v^* \cdot \gamma_{\text{M,2}}} \right)} \right] \right]$

Material Models / Analytical Modelling / Buildability

Fresh State Workability Tests

Fresh State Mechanical Tests

Research: Material Level

0.302

1.120

0.06

0.060

0.120

[mm] 0.687

0.150

0.975

24 25 24 21 24 2

24 25 24 27 24 2

011 12 15 11 15 14 12 1º 19 20:1

Plastic Shrinkage Cracking

0.975

24 25 26 27 28 29

0 11 12 10 11 15 14 15 19 2021

Research: Structural Level

SG

SG₁

Discrete and Continuum FE Modelling

Large Scale Experimental Testing

Engineering · EyobuNjineli · Ingenieurswese

Hardened State Mechanical Tests / Anisotropy

Research: Structural Level

Fire Performance Tests

Environmental Effects / Curing

Durability Tests / Carbonation

Research: Building Level

Off-Site Construction / Prefabrication

Construction Model

Two Options

- Prefabrication / Off-Site
- On-Site (Walls & Roof)

Ix /Time Period SDCP 3x /Time Period

Conventional Methods

Higher Productivity = Lower Turnaround Time **Affordable** = Keeping up with Population Growth (≠ Cost)

What's Next?

3D Print Full Scale House [±40-60 m²] in 2025 by Partnering with Industry and Statutory/Regulatory Entities

Aim?

- 1. Demonstrate Technology Readiness Level (TRL) in RSA Context [6 to 9] (Show)
- 2. Facilitate Industry Adoption of 3DCP Technology (Grow)
- 3. Ensure Safe and Sustainable Implementation (Lead)

Our aim is to unlock the true potential of Additively Manufactured Concrete Technologies and transform the largely unindustrialized global construction sector into a smart, sustainable and lucrative industry.

Prof Gideon van Zijl gvanzijl@sun.ac.za

Dr Jacques Kruger pjkruger@sun.ac.za

Thank you Dankie Enkosi

Photo by Stefan Els