Material Characterization and Numerical Simulation of Complex Materials and Structures

Prof Martin Venter

Stellenbosch University, South Africa

Engineering and Science Showcase, Thursday, 23 May 2024

orward together onke siya phambili aam vorentoe

MOD Research Group

Mr Johann Bredell

Prof Martin Venter

Prof Gerhard Venter

- Materials, Optimisation and Design Research Group
 - Complex (structural) numerical simulations
 - Optimisation and machine learning
 - Programming and automation
 - Experimental work/validation

Topics

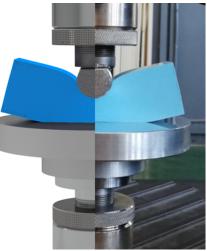
Topics

forward together sonke siya phambili saam vorentoe

In-Depth Discussion: Material Characterization

- Project motivated from a biological perspective
 - Small samples that are difficult to get hold of
 - Difficult to perform traditional material tests due to sample size
 - Not well-characterized material
- These materials are well-represented by soft silicone rubbers
- The techniques developed here apply to any biological material and/or rubber-like material that the Mooney-Rivlin material model describes
- The goal of this work is to obtain material properties for use in FE analysis for design purposes

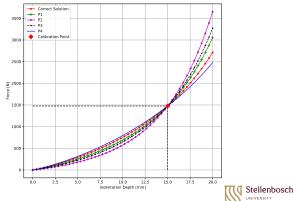
Characterization of Soft Rubber


- Work done by Dr JD van Tonder
- How to characterize the Mooney-Rivlin 3 parameter material model for Silicon rubber?
- Traditionally done using multiple tensile and compressive tests
- Our goal is to perform this using a single, complex test case using:
 - Inverse FE model updating (FEMU)
 - Full-field displacement data from Digital Image Correlation (DIC)

There is a Problem

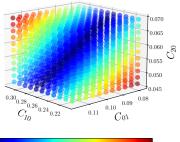
The results obtained from the inverse approach are not unique

Inverse FE Model Updating



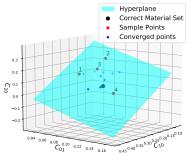
Engineering | EyobuNjineli | Ingenieurswese

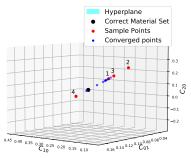
Non-Uniqueness


- Multiple sets of material parameters provide the correct load-displacement data at the test point
- Behavior away from the test point is not the same

Hyperplanes - Discovery

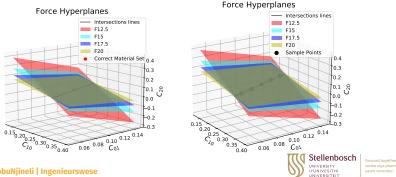
- We started to investigate the problem by running a large number of simulations with different material properties
- From these results, it was clear that certain patterns emerge

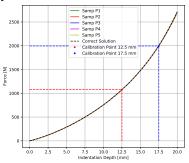

Indentation Force Data



Hyperplanes - End Result

 Based on these numerical experiments, we obtained the following

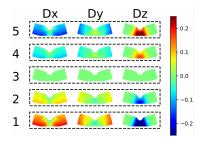



Hyperplanes - There is More

- It turns out that for different force/displacement levels, the hyperplanes rotate about a line that passes through the correct value
- The force hyperplanes behave better than the displacement hyperplanes, so we will concentrate on those here

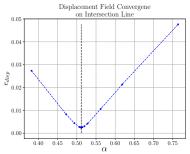
Non-Uniqueness Solved?

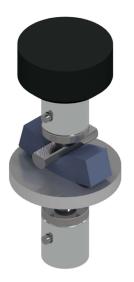
- Instead of having solutions on a plane, we now have solutions on a line
- This improves but does not solve the non-uniqueness problem yet

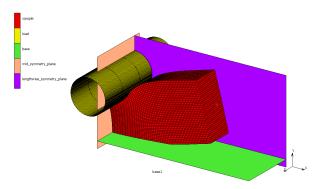


Non-Uniqueness Solved?

- Instead of having solutions on a plane, we now have solutions on a line
- This improves but does not solve the non-uniqueness problem yet




forward together sonke siya phambili saam vorentoe

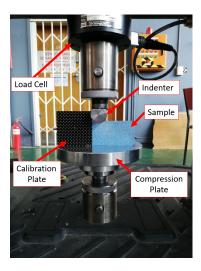

Also Consider the Displacement Field

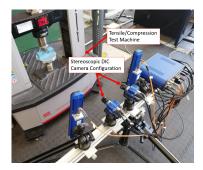
- To resolve the non-uniqueness problem, we can also consider the DIC displacement
- Perform a displacement field match for solutions that lay along the hyperplane rotation line

Application

Results

We concentrate on the numerically simulated experiment


- Exact results known
- No experimental error/noise
- Can reliably match the known parameters within 1%
- Results are independent of indentation level
- Results are dependent on mesh convergence

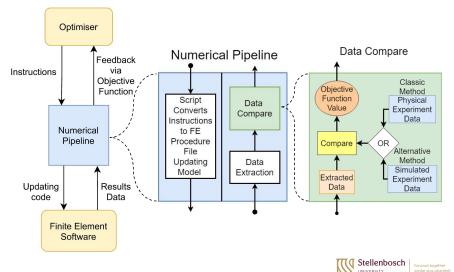

Physical Experiments

Results were replicated in physical experiments as well

Physical Experiments

forward together sonke siya phambili saam vorentoe

- We are characterizing soft silicon rubber materials using a single, complex test case
- For the test, we measure the applied load and full field displacement values using DIC
- Hyperplanes are introduced as a way of solving the non-uniqueness problem associated with the inverse method
- The results have been extensively validated with numerical experiments and limited physical experiments
- To date, the approach has only been applied to the three-parameter Mooney-Rivlin material model



Questions

Inverse FE Model Updating

IYUNIVESITH