Taking First Steps Towards Sustainable Road Freight

forward together sonke siya phambili saam vorentoe

Prof Joubert van Eeden Department of Industrial Engineering, Stellenbosch University, South Africa. Photo by Stefan Els

Engineering | EyobuNjineli | Ingenieurswese

- Why is carbon emissions important for SA Exporters
- Macrologistics data to support evidence-based decision making
- Decarbonising Logistics: Where to next?
- Electric Vehicle Ecosystem
- SU Initiatives

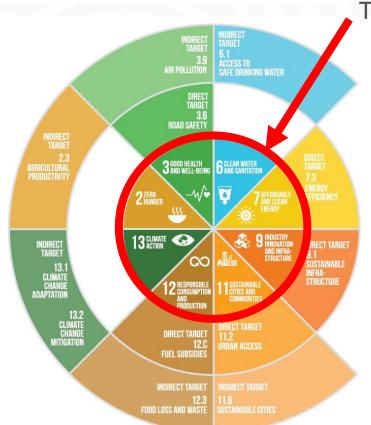
- Why is carbon emissions important for SA Exporters
- Macrologistics data to support evidence-based decision making
- Decarbonising Logistics: Where to next?
- Electric Vehicle Ecosystem
- SU Initiatives

Background on Global Mobility

Global transport systems will change, are changing...

- South Africa are dependent on global OEMs:
 - Availability of replacement vehicles
 - Local vehicle manufacturing industry (SA Economy)
- Energy situation:
 - Electricity generation and distribution pressure
 - Government dependence on fuel income (Policy)
- SA public dependent on:
 - Consumer goods (Logistics)
 - Individual mobility (Public transport)

Threat: Should Emissions Really Worry You?

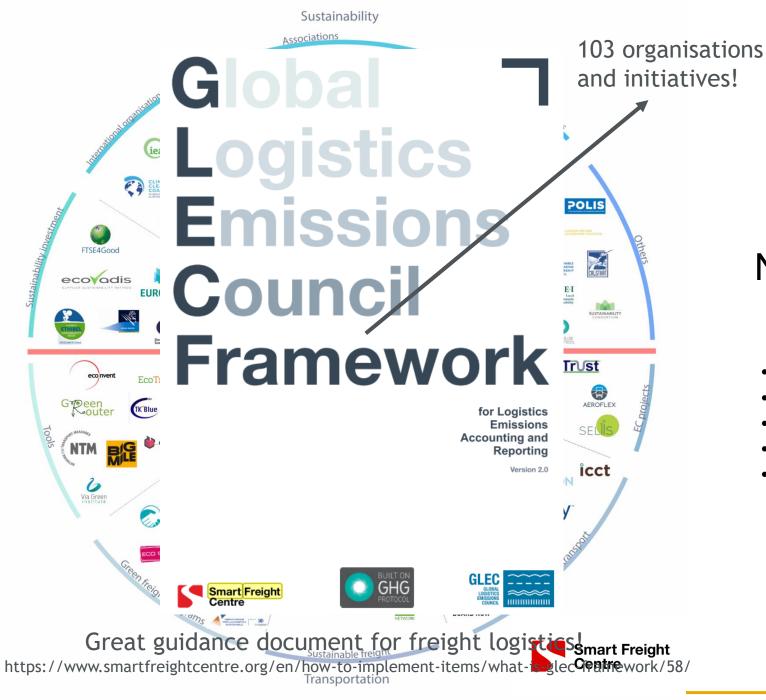


- EU setting a global trend The Carbon Border Adjustment Mechanism (CBAM)¹
- Energy- and GHG-intensive goods such as:
 - Cement, steel, aluminium, fertilizers, electricity and hydrogen (and what next???)
 - EU adamant: All importers to map entire product SC
- **Timeline** for CBAM?
 - Phased in by 1 October 2023, full implementation by 2026
- Financial impact of CBAM?
 - Africa might lose 5,7%² of its exports to the EU, equivalent to \$16 billion in trade...
- Will your business be part of these statistics?

¹ https://taxation-customs.ec.europa.eu/green-taxation-0/carbon-border-adjustment-mechanism_en

² https://www.engineeringnews.co.za/article/eu-carbon-border-tariffs-could-knock-16bn-off-africas-yearly-gdp-2023-02-15

Sustainable Development Goals (SDGs) AND Transport


Transport - Integrated into 8 SDGs

(United Nations, 2023)

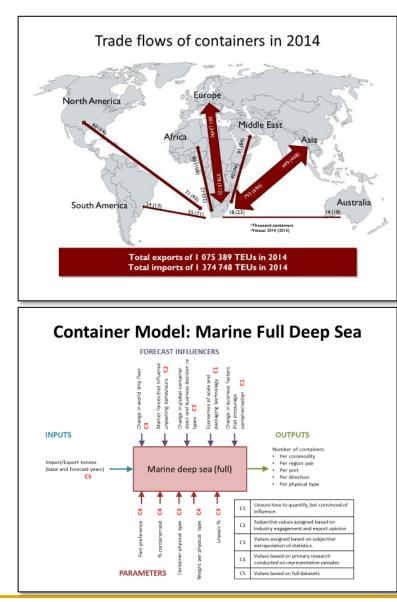
Where does sustainable transport fit into the United Nations SDGs?

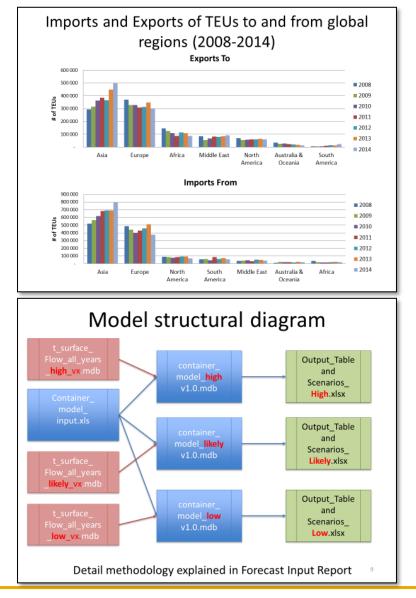
Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

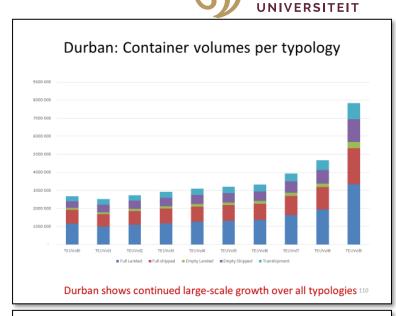
Navigating the World of Sustainable Freight

- Organisations
- Programmes
- Projects
- Tools
- Interventions

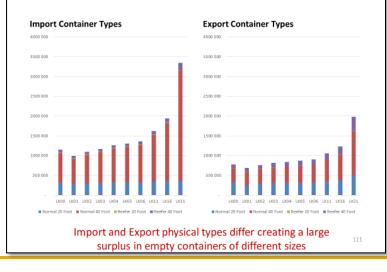
- Why is carbon emissions important for SA Exporters
- Macrologistics data to support evidence-based decision making
- Decarbonising Logistics: Where to next?
- Electric Vehicle Ecosystem
- SU Initiatives


MacroLogistics planning and modelling


- Past 17 years:
 - Freight Demand Model for SA: with Prof Jan Havenga
 - Freight Corridor modal shift: with Prof Jan Havenga
 - Port infrastructure planning: Based on Economic Trade Activity
- More recent:
 - End-to-end supply chain emissions: Mapping fruit carbon emissions from pack house to international port of destination
 - Modal shift/Third Party Rail Access: Potential for energy and carbon savings known, implementation opportunities to be explored
 - Transport Ecosystem for transition to Renewable Energy Freight Vehicles: Definition of Elements, Stakeholders and system interactions

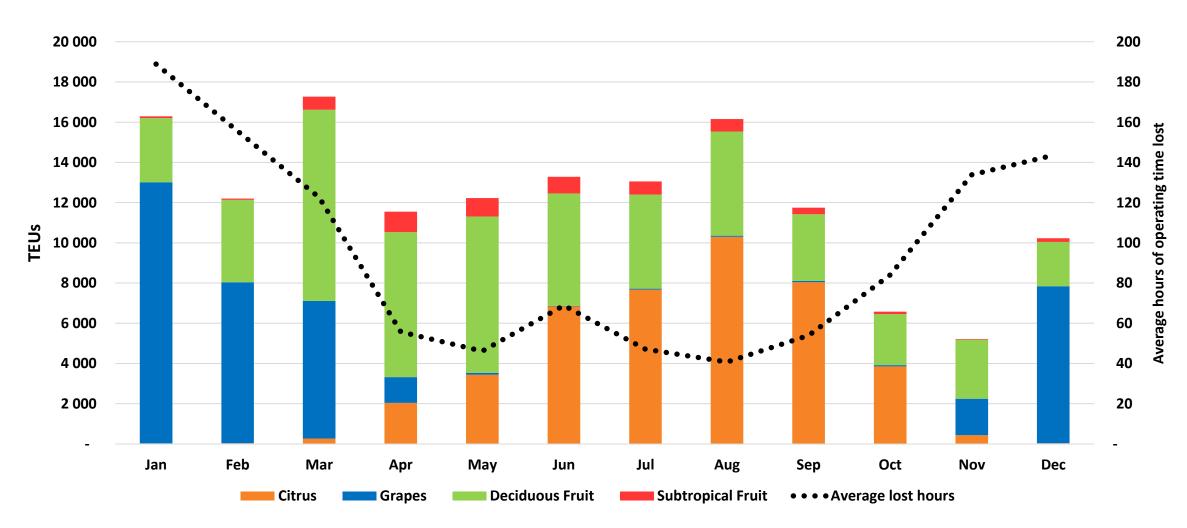

Multiple outputs over the years from this research

Port Container Demand planning models

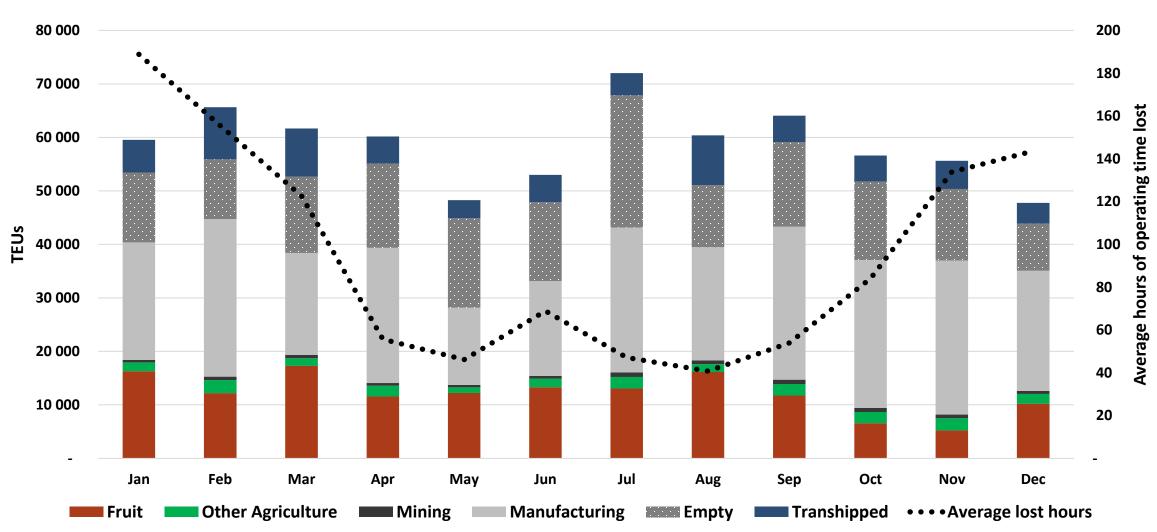


Stellenbosch

UNIVERSITY IYUNIVESITHI


Durban: Full Deep-sea Container Types

Engineering · EyobuNjineli · Ingenieurswese


TEUs per fruit type (2020)

Source: WC FDM[™] PE (2022); GAINGROUP

Total Cape Town Container Terminal TEUs (2020)

The scale of emissions: results of typical example scenarios

The scale of emissions: results of typical example scenarios

- Short vs long cold chains do matter
- Increasing cold chain by six months leads to
 - Emissions increase of 96% (g CO₂e/kg of apples)
 - 1.73 kg CO₂e/kg of fruit.

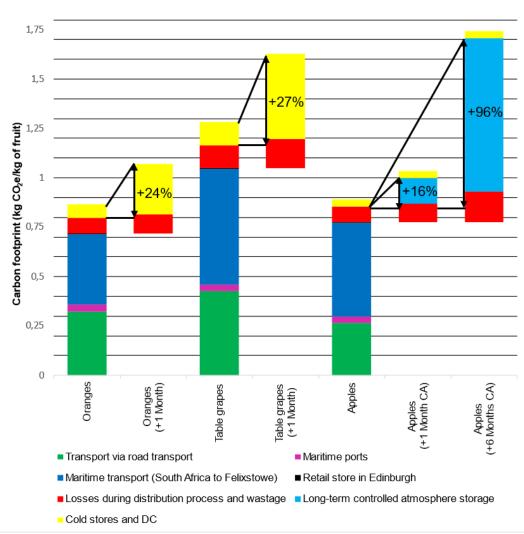
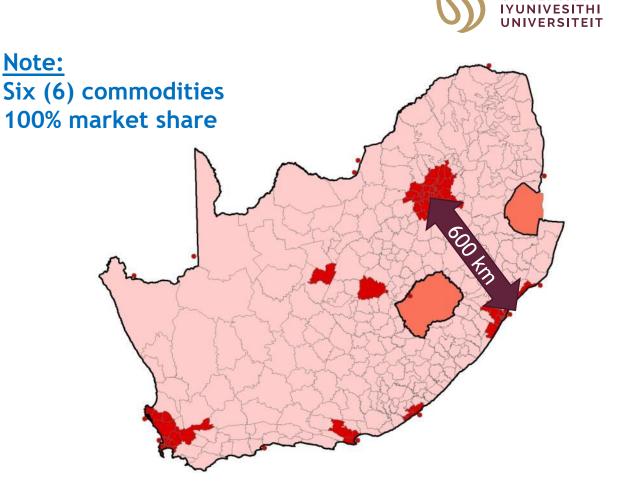


Figure 6: The emissions impact of increasing the cold chain length

Stellenbosch

Modal shift Impact: Durban - Gauteng


Catchment areas: Durban = 40 km Gauteng = 150 km

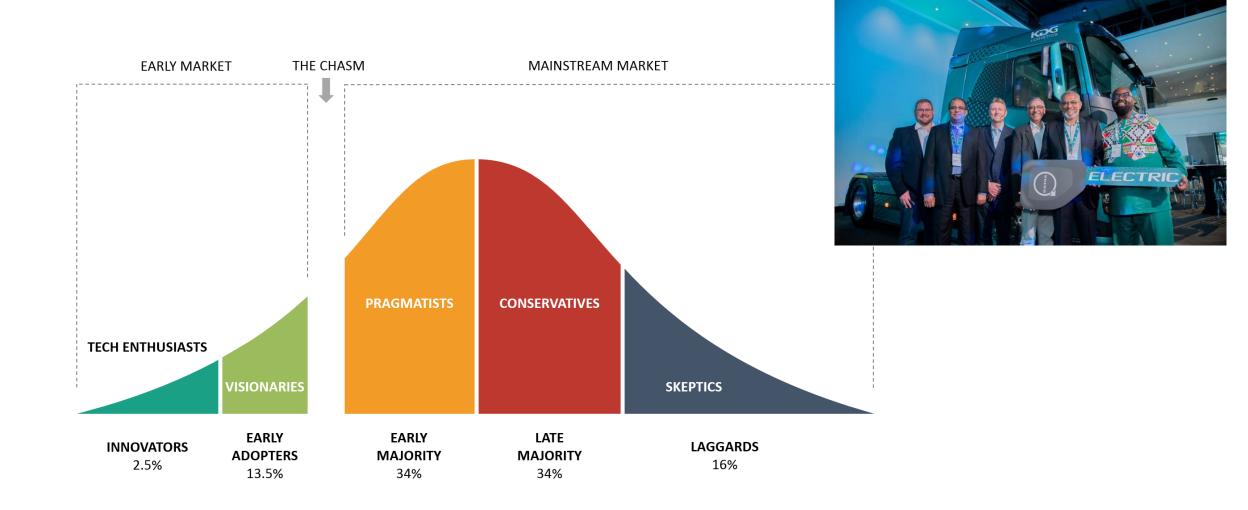
Import/Export only:

- Tonnes = 0.95 million
- Tonne-km = 0.57 Billion
- Trains per week = 26 (sum)

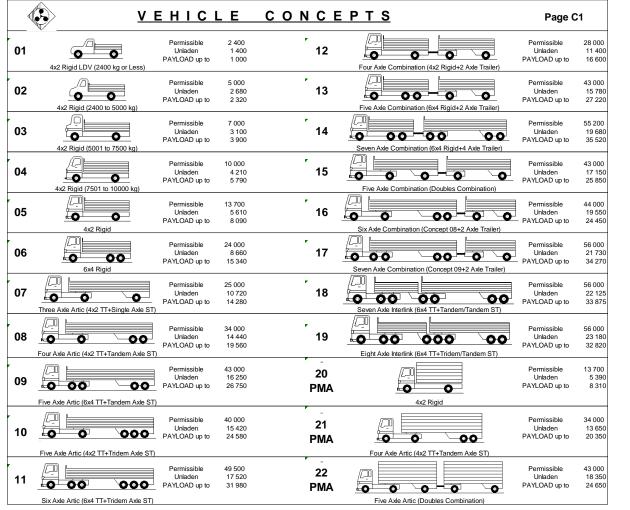
Domestic & Import/Export:

- Tonnes = 2.4 million
- Tonne-km = 1.4 Billion
- Trains per week = 66 (sum)
- Truck trips = 1 150 per week (reduction)

Stellenbosch



- Why is carbon emissions important for SA Exporters
- Macrologistics data to support evidence-based decision making
- Decarbonising Logistics: Where to next?
- Electric Vehicle Ecosystem
- SU Initiatives



Technology Adoption Chasm: Data-driven informed decision-making

Vehicle and transport tasks (RFA classes)

						JNIVERSII	
		ALL	THE VEHICLE CONCEPTS IN T	HE RFA VEHICLE COST SCHED	DULE		Page C2
No V Drop Side	Van	Flat Bed	Tipper	Tanker	Fridge	Lowbed	PMA
01 4x2 Rigid LDV (2400 kg or Less)	00	NA	NA	NA	NA	NA	NA
02	<u> </u>	NA	NA	NA	NA	NA	NA
	00	NA	NA	NA	NA	NA	NA
04 4+2 Rgd (7501 to 10000 kg)	60	NA	NA	NA	NA	NA	NA
			ġ.			NA	
D6		0 00				NA	NA
07			NA	NA	NA	NA	NA
08 O O OO		<u>, 0</u>			NA	NA	
09	0 00 00	0 000 00			000 00		NA
10 C OOO		000 000			6 (1) 0	NA	NA
I1		000			0		NA
	┟╔═╼╶╤╼		NA	NA	NA	NA	NA
13			NA		NA	NA	NA
	<u>.</u>		NA	NA	NA	NA	NA
15 0 0 0 0 0			NA	NA	NA	NA	
16 State Combination (Concept 08-2 Asia Trailer)	J 0 00 00 0		NA	NA	NA	NA	NA
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u></u>	a • • • • • • • • • • •		NA	NA	NA
18 000 00 00 00	0 00 00 00		0 00 00 00	0 00 00 00	0 00 00 00	NA	NA
19 0 00 000 00	<u></u>	00 000 00	NA	NA	0 00 000 00	NA	NA

Stellenbosch

UNIVERSITY

IYUNIVESITHI

UNIVERSITEIT

No	Drop Side	Van	Flat Bed	Tipper	Tanker	Fridge		
18	Seven Axle Interlink (6x4 TT+Tandem/Tandem ST)							

Engineering · EyobuNjineli · Ingenieurswese

Vehicle and transport tasks (RFA classes)

	VEHICLE CONCEPTS		Page C1								0		VESIT	'HI
01	Permissible 2 400 ' Unladen 1 400 12			28 000	(3)			ALI	THE VEHICLE CONCE	EPTS IN THE RFA VEHI	CLE COST SCHEDULE			Page C2
4x2 Rigid LDV (240	PAYLOAD up to 1 000			16 600 No	Drop Side	Va	in	Flat Bed	Tipper	т	anker Frids	je Low	bed	PMA
	······································					ĥ							-	NA
02	31 December 2022 - Live vehicle population as per the Nationa	I Traffic Inform	mation Syste	em - eNaTIS										NA
4x2 Rigid (2400		1110		o. 89	Р	rovince	0	a 83			1	% of total		NA
03	Vehicle Class										Total	self-		NA
4x2 Rigid (5001		GP	KZ	WC	EC	FS	MP	NW	L	NC		propelled		NA
04	Motor cars and station wagons	3 183 211	1 058 685	1 330 321	482 295	323 010	453 451	344 686	374 597	134 897	7 685 153	65,54%		
4x2 Rigid (7501	Minibuses	129 336	59 118	37 759	26 914	13 113	26 805	21 934	27 649	6 707	349 335	10000000		
	Buses, bus trains, midibuses	20 004	8 187	6 894	4 668	3 482	8 013	4 029	6 937	1 956	64 170	1000000000	-	NA
05	Motorcycles, guadrucycles, tricycles	143 664	32 153	87 707	20 959	16 839	16 755	12 460	8 444	7 172	346 153	2,95%		NA
4x2 Rij	LDV's, panel vans, other light load veh's GVM <= 3500kg	871 343	379 387	345 867	207 929	134 607	227 224	161 579	247 541	82 939	2 658 416	22,67%		
06	Trucks (Heavy load vehicles GVM > 3500kg)	143 065	52 272	47 028	22 313	23 845	42 814	17 875	27 362	9 271	385 845	3,29%		0 0 00
6x4 Rig	Other self-propelled vehicles	37 413	31 553	41 438	16 810	34 679	27 478	21 047	17 259	9 522	237 199	2,02%	00	NA
07	Total self-propelled vehicles	4 528 036	1 621 355	1 897 014	781 888	549 575	802 540	583 610	709 789	252 464	11 726 271			NA
Three Axle Artic (4x2 1	Provincial % of total	38,61%	13,83%	16,18%	6,67%	4,69%	6,84%	4,98%	6,05%	2,15%	100,00%	% of total tow vehicles	- 000	NA
08 0 0	Caravans	35 344	6 389	19 046	4 997	6 862	9 325	6 011	5 315	2 596	95 885	7,92%	-	NA
Four Axle Artic (4x2 TT	Light load trailers GVM <= 3500kg	331 847	82 438	157 560	59 126	62 502	65 704	54 994	45 190	30 616	889 977	73,52%		NA
	Heavy load trailers GVM > 3500kg	70 054	26 905	26 292	7 655	22 401	39 475	11 758	13 657	6 383	224 580	18,55%		NA
09 Five Axle Artic (6x4 TT	Total trailers	437 245	115 732	202 898	71 778	91 765	114 504	72 763	64 162	3 <mark>9 5</mark> 95	1 210 442			
	Total provincial % of total	36,12%	9,56%	16,76%	5,93%	7,58%	9,46%	6,01%	5,30%	3,27%	100,00%			NA
10 0	All other and unknown vehicles	4 1 1 9	2 599	4 245	2 7 9 9	3 426	3 276	3 767	2 212	1 274	27 717			
Five Axle Artic (4x2 T	Total number	4 969 400	1 739 686	2 104 157	856 465	644 766	920 320	660 140	776 163	293 333	12 964 430			NA
	Provincial % of total	38,33%	13,42%	16,23%	6,61%	4,97%	7,10%	5,09%	5,99%	2,26%	100,00%			NA
Six Axle Artic (6x4 TT														

T Stellenbosch

No Drop Side	Van	Flat Bed	Tipper	Tanker	Fridge		
18 Seven Axle Interlink (6x4 TT+Tandem/Tandem ST)							

- Why is carbon emissions important for SA Exporters
- Macrologistics data to support evidence-based decision making
- Decarbonising Logistics: Where to next?
- Electric Vehicle Ecosystem
- SU Initiatives

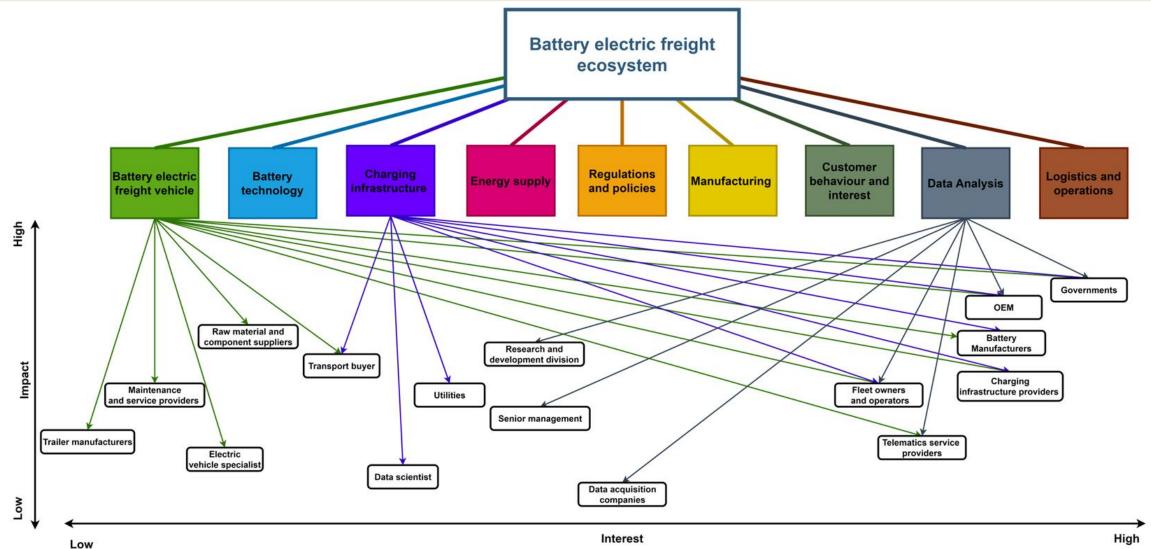
Elements of a Transport Ecosystem for transition to Electric Freight Vehicles

- 1. Different types of vehicles: Require different types of EVs with larger battery capacities and charging systems to meet the demands of heavy-duty commercial transport.
- 2. Battery technology: The specific requirements, including longer battery life and more efficient energy storage systems.
- 3. Charging infrastructure: Adapted to accommodate unique needs of heavy freight vehicles, i.e. larger charging stations, higher power charging.
- 4. Energy suppliers: Energy suppliers would need to consider the increased energy demand of heavy freight vehicles.
- 5. Government policies: Challenges facing the adoption of electric freight vehicles, such as the availability of charging infrastructure, the development of regulations for commercial transport, and incentives businesses to switch.
- 6. Manufacturing industry: Manufacturers of heavy goods freight vehicles and their components would need to invest in the development of EVs.
- 7. Data and analytics: The collection and analysis of data generated by electric freight vehicles in optimizing usage and improving overall efficiency of the ecosystem.
- 8. Vehicle ownership and Customer behaviour: Behaviour and habits of freight operators and fleet managers play a critical role in the adoption of electric freight vehicles.
- 9. Passenger operational requirements: Trip identification, urban traffic management, opportunity charge technology and locations, etc.
- 10. Logistics operational requirements: Logistics encompasses the planning, organization, and management of the transportation and delivery of goods, and is essential to the efficient operation of freight transport.

Elements, Attributes, Relationships ???

Engineering · EyobuNjineli · Ingenieurswese

Ecosystem design for large scale transition to e-Mobility for passenger and freight transport: *Stakeholders*


Stellenbosch

UNIVERSITY IYUNIVESITHI

UNIVERSITEIT

Ecosystem design for large scale transition to e-Mobility for passenger and freight transport: Ability to Impact vs Interest

- Why is carbon emissions important for SA Exporters
- Macrologistics data to support evidence-based decision making
- Decarbonising Logistics: Where to next?
- Electric Vehicle Ecosystem
- Department of Industrial Engineering Initiatives

Department of Industrial Engineering Initiatives

- Sustainable Road Freight (SRF-SA) research group (since 2018)
 - Collaboration with SRF centres in UK, India, China
 - Focus: Technology, Logistics operations and Policy
 - Research via funded projects and international partnerships

Department of Industrial Engineering Initiatives

- Sustainable Road Freight (SRF-SA) research group
 - Collaboration with SRF centres in UK, India, China
 - Focus: Technology, Logistics operations and Policy
 - Research via funded projects and international partnerships
- Framework for fruit export emissions:
 - Collaboration between Departments of Industrial Engineering and Logistics (EMS)
 - Developed process framework and SA specific emissions factors
- Other WIP:
 - Third Party Rail Access: Potential for energy and carbon savings known, implementation opportunities to be explored
 - Smart Freight Centre: Discussions for SSA truck emissions factors (GLEC focussed chapter)
 - Elements of a Transport Ecosystem for transition to Renewable Energy Freight Vehicles

Thank you Enkosi Dankie